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Abstract: The paper treats a motion of an airplane landing on a straight line and
stretching a weightless viscoelastic Þber whose ends are anchored at points a given
distance from the line. The constitutive model of the viscoelastic Þber comprises
fractional derivatives of stress and strain and the restrictions on the coefficients
that follow from Clausius Duhem inequality. The dynamics of the problem may
be represented by a single integral equation involving Mittag-Leffler-type function.
The existence of the solution will be ensured by the Contraction Mapping Principle
and will be obtained numerically by use of the Þrst-order fractional difference
approximation. Copyright c°IFAC 2004
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1. INTRODUCTION

The new tendency in engineering favors the de-
sign of slender structures incorporating new high
performance materials. The use of such struc-
tures requires thorough knowledge of their phys-
ical properties, especially the study of viscoelas-
tic response. This raises the problem of coupling
geometric nonlinearity with either linear or non-
linear constitutive equations. According to Bagley
(1989) it seems that a generalized linear model of
a viscoelastic body that contains fractional deriva-
tives of stress and strain is capable of describing
viscoelastic behavior of real materials in a more
accurate way then nonlinear constitutive models
with derivatives of integer order. Following that
lines, one may pose a problem how to treat Þ-
nite deformations coupled with so called standard
fractional viscoelastic body. This will lead to non-
linear fractional differential equations.

As stated by Seredyńska and Hanyga (2000), pa-
pers on nonlinear fractional differential equations
are rare. Namely, in their paper on nonlinear
pendulum and the Duffing equation, with a Ca-
puto fractional derivative term replacing the usual

damping, striking differences between ordinary
differential and fractional differential equations
are shown.

The aim of this paper is to add one more exam-
ple to the list of nonlinear fractional differential
equations.

2. THE PROBLEM

Consider a motion of an airplane landing on a
straight line and stretching a weightless viscoelas-
tic Þber whose ends are anchored at points a
given distance from the line, see Fig. 1. Roughly
speaking the landing script could be as follows.
At the time t = 0 the airplane of mass m, with
velocity v0, touches the ßight deck and at the
same moment, it touches the weightless viscoelas-
tic Þber, of length 2h, which was perpendicular
to the line of landing. The stretching of the Þbre
will proceed until the airplane slows dawn. With
very low velocity, say at t = t̄, the airplane will
release the Þbre and, in order to stop, will use the
classical brake. This last part is not the subject
here.



Fig. 1. System under consideration.

The differential equation of motion of an airplane
and the initial conditions read

mξ(2) = −2f sinϕ,

ξ(1) (0) = v0, ξ (0) = 0, f (0) = 0,

(1)

where (·)(k)
= dk (·) /dtk denotes the k−th deriva-

tive with respect to time t, and where ξ = ξ (t) and
f = f (t) stand for the coordinate and the contact
force between the airplane and the Þbre. It should
be noted that large values of ξ and ϕ (the angle
describing the Þbre deformation) are allowed.

The strain measures are often deÞned with special
requirements in mind, see Atanackovic and Guran
(2000). Let x = x (t) be the half measure of the
isothermal uniaxial deformation of the Þbre. For
simplicity, the relation between f = f (t) and
x = x (t) (constitutive equation of the deformable
Þbre) may be taken in the following form

f + τfαf
(α) =

EαA

h

³
x+ τxαx

(α)
´
, (2)

where 0 < α ≤ 1, A is the area of the Þ-
bre cross-section, Eα is the modulus of elastic-
ity, τfα and τxα are the constants of dimension
[time]α. In (2), for 0 < α < 1, (·)(α) denotes the
α − th derivative of a function (·) taken in the
Riemann-Liouville form as dα[g(t)]/dtα=g(α)=
d[Γ−1 (1− α) R t

0
g (ξ) (t− ξ)−α dξ]/dt, where Γ de-

notes the Euler Gamma function. In the special
case when α = 1 equation (2) represents the
standard model of linear viscoelastic solid with
τf1 and τx1 known as the relaxation times. Note
that there exists fundamental restrictions on the
coefficients of the model, that follow from the sec-
ond law of thermodynamics, (Atanackovic, 2002),

Eα > 0, τfα > 0, τxα > τfα, (3)

Further, it is assumed that x (0) = 0.

In the following the obvious geometrical relations
sinϕ = ξ/ (h+ x) and ξ2 + h2 = (x+ h)2 are
going to be very useful. Namely, introducing the
dimensionless quantities ξ̄ = ξ/h, x̄ = x/h, t̄ =

t [2EαA/ (mh)]
1/2 , τ̄xα = τxα [2EαA/ (mh)]

α/2 ,

τ̄fα = τfα [2EαA/ (mh)]
α/2, f̄ = f/EαA and

λ = v0 [m/ (2EαAh)]
1/2
, one gets the following

system describing the airplane landing phase

ξ(2) = −f ξp
1 + ξ2

,

ξ(1) (0) = λ, ξ (0) = 0, f (0) = 0,

(4)

with
f + τfαf

(α) = x+ τxαx
(α), (5)

and
ξ2 + 1 = (1 + x)2 . (6)

In equations (4) - (6) the bar was omitted and the
derivatives are taken with respect to dimensionless
time. Also, the restrictions (3)2,3 in dimensionless
form remain the same.

The main concern of this work is the solution of
(4) - (6). Before one proceed to it two remarks
should be made here. First, by differentiating (6)
twice, variable ξ could be eliminated, i.e., eq. (5)
is to be solved together with nonlinear equation

x(2) −
£
x(1)

¤2
x (1 + x) (2 + x)

+ fx
(2 + x)

(1 + x)
2 = 0, (7)

with

x (0) = 0, x(1) (0) = 0, f (0) = 0, (8)

but this form of the problem is not enough
tractable, (note that x(2) (0) = λ2 6= 0). Sec-
ondly, the constitutive equation (5), so called the
modiÞed Zener model, is good enough to describe
viscoelastic behaviour for wide class of real ma-
terials, metals, geological strata, glass, polymers
for vibration control, even human root dentin, see
Pritz (1996) and Petrovic et al. (2004), for exam-
ple. When dealing with (5), a special attention
should be paid to thermodynamical restrictions
that should be observed in determining parame-
ters of the model from experimental results. How-
ever in some problems, despite the fact it violates
thermodynamical constraint τfα > 0, the term
τfα is small enough and could be neglected, (see
(Fenander, 1998), where τfα reads 0.69 × 10−9

sec0.49). In such cases the problem (5), (7) reduces
to single nonlinear fractional differential equation

x(2) −
£
x(1)

¤2
x (1 + x) (2 + x)

+

¡
x2 + τxαxx

(α)
¢
(2 + x)

(1 + x)
2 = 0,

(9)

with initial conditions (8)1,2.



3. THE SOLUTION

In order to solve the landing problem the Laplace
transform method will be applied. It will be shown
that the dynamics of the problem is governed
by a single integral equation involving Mittag-
Leffler-type function, whose solution is ensured by
the Contraction Mapping Principle, (Hutson and
Pym, 1980). Introducing X=X (s)=L{x (t)}=R∞

0
e−stx (t) dt and F=F (s)= L{f (t)}=R∞

0
e−stf (t) dt,

from (5) one gets

F =
1 + τxαs

α

1 + τfαsα
X, (10)

where the standard expression for the Laplace
transform of z(α) was used, that is, L{z(α)}=
sαZ-

h³R t
0
z (ξ) dξ/ (t− ξ)α

´i
t=0

, with L{z (t)}=
Z=Z (s) , and where the term in brackets vanishes
since limt→0+ z (t) is bounded, see (Oldham and
Spanier, 1974). The inversion of (10) yields the
following relation between f (t) and x (t)

f (t) =
τxα
τfα

x (t) +
1

τfα

µ
1− τxα

τfα

¶
×

Z t

0

eα,α

µ
t− ξ, 1

τfα

¶
x (ξ) dξ,

(11)

where eα,β (t;λ) stands for the generalized Mittag-
Leffler function eα,β (t;λ) ≡ Eα,β (-λtα) /t1−β

with Eα,β (t) =
P∞
n=0 t

n/Γ (αn+ β) , (Gorenßo
and Mainardi, (1997).

Next the geometrical relation (6) will be used.
Namely, substituting x =

p
ξ2 + 1 − 1 in (11)

and the obtained function f (t) into (4), the land-
ing problem reduces to the following initial data
problem

ξ(2) = − ξp
1 + ξ2

½
τxα
τfα

µq
1 + ξ2 − 1

¶
+

1

τfα

µ
1− τxα

τfα

¶
×

tZ
0

eα,α(t− ρ, 1
τfα

)

·q
1 + ξ2(ρ)− 1

¸
dρ

 ,
ξ(0) = 0, ξ(1)(0) = λ.

(12)
Thus, ξ has to satisfy the following integral equa-
tion

ξ(t)=

tZ
0

λ-
sZ

0

ξ(u)

1+ξ2(u)

·
τxα
τfα

µq
1+ξ2(u)-1

¶
+

1

τfα

µ
1− τxα

τfα

¶
×

uZ
0

eα,α(u-ρ,
1

τfα
)

µq
1+ξ2(ρ)-1

¶
dρ

 du
 ds

=M (ξ (t)) .
(13)

With this preparation done, one may apply the
argument of the Þxed point theorem. Let the ξ be
in Banach space C1((0, T )), equipped with sup-
norm, for some T > 0. In the following, the sign
k ·k will be used instead of k · kL∞((0,T )). Let B be
the unit ball with center in (ξ(0), ξ(1)(0)) = (0, λ)
in C1((0, T )), and BT = B × [0, T ]. Note that

|ξ(t)− (0, λ)| ≤
¯̄̄̄
¯̄
tZ

0

τxα
τfα

+
1

τfα
×

¯̄̄̄
¯̄
TZ

0

eα,α(s− ρ, 1
τfα

)dρ

¯̄̄̄
¯̄ ξ(s)ds

¯̄̄̄
¯̄ .

(14)

By taking the supremum of (14) over the interval
[0, T ], one can see that M (ξ) ∈ BT , if ξ ∈ BT
for T small enough. The Þrst derivative can be
estimated in the same way. Again, for T0 < T
small enough, one can see thatM is a contractive
mapping. Thus there exist a local solution (in
the interval [0, T0]). The uniqueness of such a
solution.could be shown as follows. Suppose that
ξ and ξ1 are two solutions. Then

|ξ(t)− ξ1(t)| ≤
¯̄̄̄
¯̄
tZ

0

τxα
τfα

+
1

τfα
×

¯̄̄̄
¯̄
TZ

0

eα,α(s− ρ, 1
τfα

)dρ

¯̄̄̄
¯̄ |ξ(s)− ξ1(s)|ds

¯̄̄̄
¯̄ .
(15)

Gronwall inequality then implies that |ξ(t) −
ξ1(t)| ≤ 0, i.e. ξ ≡ ξ1. It could be shown that
the above solution is the global one, because T0

does not depend on the initial data.

Finally by use of the Þrst-order fractional dif-
ference approximation, the inßuence of the four
constants describing the Þber properties on the
landing track, could be examined. Introducing the
time step h, (tm = mh, m = 1, 2, ...), and the stan-
dard difference approximations for the Þrst and
second derivatives, the fractional derivative z(α)

m

may be taken in the form h−α
Pm
j=0 ωj,αzm−j ,

with ωj,α calculated by the recurrence relation-



ships ω0,α = 1 and ωj,α = (1− (α+ j) /j)ωj−1,α, (j =
1, 2, 3, ..), see (Podlubny (1999)). Then, taking
into account the geometrical relation (6), the dis-
cretization of (4) and (5) read

ξm = 2ξm−1 − ξm−2 −
h2fm−1ξm−1p
1 + ξm−1

,

fm =

µq
ξ2
m + 1− 1

¶
hα + τxα
hα + τfα

+

mP
j=1

ωj,α

h
τxα

³q
ξ2
m−j + 1− 1

´
− τfαfm−j

i
hα + τfα

,

m = 3, 4, ...
(16)

with ξ0 = 0, f0 = 0, and ξ1, ξ2 given as a solution
of

ξ2 − 2ξ1 + h
2

ξ1

µq
ξ2

1 + 1− 1
¶

q
1 + ξ2

1

hα + τxα
hα + τfα

= 0,

−ξ2 + 4ξ1 − 2λh = 0,
(17)

with

f1 =

µq
ξ2

1 + 1− 1
¶
hα + τxα
hα + τfα

and

f2 =

µq
ξ2

2 + 1− 1
¶
hα + τxα
hα + τfα

+

ω1,α

·
τxα

µq
ξ2

1 + 1− 1
¶
− τfαf1

¸
hα + τfα

.

4. RESULTS

In order to illustrate the above results, the nu-
merical solution for the values α, Eα, τfα and
τxα taken from the paper of Fenander (1998),
will be presented. Namely, for α = 0.23, and
dimensionless values τfα = 0.004, τxα = 1.183,
λ = 1, the motion of the system is presented in
Fig. 2.

Fig. 2. Motion of the airplane for α = 0.23,
τfα = 0.004, τxα = 1.183 and λ = 1.
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