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1 SUMMARY
We consider the motion of a mass moving on a straight line under the action of a harmonic
disturbing force. The mass is �xed to a viscoelastic body whose other end is anchored. It is
assumed that the viscoelastic body behaves according to a generalized model that contains frac-
tional derivatives of stress and strain. Thermodynamical restrictions on the coef�cients of the
model, that follow from the Clausius Duhem inequality, are taken into account. It is shown that
the dynamics of the problem is governed by a single differential equation of real order. The ob-
tained equation was solved by use of the method of Laplace transformation. The proposed model
could be used for the study of forced vibrations of systems incorporating polymers, elastomers
and other real materials.

2 INTRODUCTION
The study of forced vibrations is a classical problem. The interest to it increases if the materials
included are taken to exhibit nonlinear behavior with, or without damping. As a part of it, the
problem of eliminating undesirable oscillations and vibrations has emerged. Namely, the new
tendency in civil engineering favors the design of slender structures as a consequence of the now
available new high performance materials. The use of such materials requires thorough knowl-
edge of their physical properties, especially the study of viscoelastic materials which provide
necessary extra damping. Special feature of viscoelastic bodies is that there exists hysteresis
like behavior in force displacement diagram that could be explained either by nonlinear models
or by use of the standard linear viscoelastic model (the Zener model). According to Bagley
[1] it seems that a generalized model of viscoelastic body that contains fractional derivatives of
stress and strain (the generalized Zener model or the fractional standard viscoelastic body) is
capable of describing the problem in a more accurate way while still remaining in linear theory.
Recently, in the paper of Enelund and Lesieutre [2], an example of a forced oscillator including
fractional damping elements was given. The solution was obtained by the Grünwald algorithm
and the �nite element method. The in�uence of the order of fractional derivative on the solution
for one value of disturbing force frequency was considered.

In this work we intend to reexamine the problem. Namely, we are going to solve the problem
by different methods. We plan to use the method of Laplace transformation with inversion
performed by complex integration [3], [4]. As an alternative approaches we are going to show
the numerical method described by Podlubny, [5] and Post's inversion formulae, [6], [7]. The
alternative approaches are more convenient for engineers but are usually followed by problems
concerning the convergence in large time domain and the short memory principle. Our analysis
closes with the in�uence of four parameters, included in the viscoelastic material description, on



the solution for different values of disturbing force frequencies. Namely, taking into account the
restrictions on the parameters, that follow from Clausius Duhem inequality, the amplitude ratio
(or magni�cation factor) will be analyzed. In doing so the resonance recognition problem will
be tackled. In the analysis that follows the standard linear viscoelastic solid (the Zener model)
will be treated as a special case of the fractional standard viscoelastic body.

3 FORMULATION OF THE PROBLEM
Consider a massmmoving on a straight line under the action of a harmonic disturbing force, say
F0 sin
t; where F0 and 
 are positive constants and t is time. The mass is �xed to a viscoelastic
body, which is assumed to be a rod of constant cross-sectional area A and of length l: We
assume that the other end of the rod is anchored and we use x to measure uniaxial, isothermal
deformation of that rod. Let f be the force between the rod and the mass1. Applying the
fundamental axiom of dynamics [8], we describe the considered motion by

mx(2) = �f + F0 sin
t; x (0) = 0; x(1) (0) = 0; f (0) = 0; (1)

where we used (�)(k) = dk (�) =dtk to denote the k�th derivative with respect to time, and where
we assumed that the mass was at rest at initial time t = 0.

The relation between f=f (t) and x=x (t) (the constitutive relation of the deformable body) may
be taken in different forms. In this paper we take it in the form that represents the generalized
model of a viscoelastic body that contains fractional derivatives of stress and strain, i.e.

f + � f� � f (�) =
E�A

l

�
x+ �x� � x(�)

�
; (2)

where 0 < � � 1; E� is the modulus of elasticity, � f� and �x� are the constants of dimension
[time]�. In (2), for 0 < � < 1; we use (�)(�) to denote the � � th derivative of a function (�)
taken in Riemann-Liouville form as d�[g(t)]=dt�=g(�)=d[��1 (1� �)

R t
0
g (�) (t� �)�� d�]=dt,

where � denotes the Euler Gamma function. Note that in the special case when � = 1 equation
(2) represents the standard model of linear viscoelastic solid with � f1 and �x1 known as the
relaxation times. Besides [2] the constitutive equation of the same type was used in [9], [10],
[11] and [12] for example. Note that there exists fundamental restrictions on the coef�cients of
the model, that follow from the second law of thermodynamics E� > 0; � f� > 0; �x� > � f�;as
proposed in the just mentioned papers.

Introducing the dimensionless coordinate, force, time and frequency of the excitation force, say
�x = xE�A (F0l)

�1 ; �f = fF�10 ; �t = t [E�A= (ml)]
1=2 and �
 = 
 [ml= (EaA)]1=2 respectively,

as well as the dimensionless constants �� f� = � fa [E�A= (ml)]
�=2 and ��x� = �xa [E�A= (ml)]

�=2 ;
from (1) and (2) we get the system of equations describing the forced vibrations with fractional

1The force f used here is given as f = A� where A is the cross-sectional area and � is the stress. We assume
that the cross sectional area remains the same during the deformation.



type of dissipation

x(2) = �f + sin
t; x (0) = 0; x(1) (0) = 0; f (0) = 0;

f + � f� � f (�) = x+ �x� � x(�);
(3)

where the derivatives are taken with respect to dimensionless time. In the sequel the bars are
suppressed over the dimensionless variables. Note that as a consequence of the second law of
thermodynamics in (3) we have��� = �x��� f� > 0 and there will be no damping if��� = 0;
see [9]. Also, note that following the lines of the classical vibration theory, when � f� = �x�; we
expect the resonance and the vibroisolation to be exhibited for 
 = 1 and 
� 1 respectively.

The proposed fractional standard linear solid model could be effective in describing the behavior
of some real materials (polymers, elastomers). Besides, it has an essential mathematical interest
too. Thus one of the main results of this paper concerns the solution of (3). In the following
section we are going to examine some of the methods which may be useful in many engineering
applications, especially when materials involved exhibit hysteresis type of force-displacement
behavior.

4 THE SOLUTION OF EQUATIONS
In order to compute the solution of (3) for the case � < 1 we apply numerical method presented
in [5], p. 223. First, we eliminate f; and then by use of basic properties of the Riemann-Liouville
fractional differentiation, instead of (3) we obtain the following (single) differential equation of
real order

� f�x
(2+�) + x(2) + x+ �x�x

(�) = sin
t+ St (��;
) ;

x (0) = 0; x(1) (0) = 0; x(2) (0) = 0;
(4)

where St (��;
) =
P1

j=0 (�1)
j 
2j+1t2j+1����1 (�+ 2j + 2) stands for the �� th Riemann-

Liouville derivative of sin
t; see [13], p. 355. Using the �rst order approximation of problem
(4), according to [5], we derive the following algorithm for obtaining the numerical solution

xm = x (tm) =
1

1 + h�2 + �x�h�� + � f�h�2��
�

�
2xm�1 � xm�2

h2
�
�x�

mP
j=1

!j;�xm�j

h�
�
� f�

mP
j=1

!j;2+�xm�j

h2+�

sin (
mh) + Smh (��;
) ; g ; m = 3; 4; :::

(5)

where h is time step (tm = mh); and where the coef�cients !j;�, � = �; 2+�; are calculated by
the recurrence relationships !0;� = 1 and !j;� = (1� (�+ j) =j)!j�1;�; j = 1; 2; 3; ::::Note
that homogeneous initial conditions (4)2;3;4 correspond to x0 = x1 = x2 = 0:

The described numerical method was experimentally veri�ed on a number of test problems by
comparing it (when it was possible) with analytical solutions, see [5]. In the case of equation (4),



with Smh (��;
) given as above, it seems that it will work provided the timemh does not leave
the convergence domain of that series. Since we know that St (�1;
) coincide with 
cos (
t),
see [13], p.318, we may speculate that if Smh (�1;
) does not coincide with 
cos (
mh), for
say m > mc; then we are not to expect the series Smh (��;
) to be convergent for m > mc

and � < 1; and thus the algorithm (5) may fail for t > tc = mch: This really does happen
in practice. For example, the numerical examination shows that cos t and St (�1; 1), truncated
after 80 terms, does not coincide for t > 30: Another problem that could be encountered while
processing (5) is the short memory problem. Namely, if we take h to be small enough for
large values ofm the number of the addends in the fractional-derivative approximation becomes
enormously large, what causes some extra technical problems, see [5], p. 203.

Since we do not know the duration of the oscillator transient regime, by use of (5) we may,
or may not, reach the steady state solution of the forced oscillator problem. This increases
our interest in �nding alternative algorithms. Thus, in the following we are going to apply the
Laplace transform and Post's inversion formula.

IntroducingX=X (s)=Lfx (t)g=
R1
0
e�stx (t) dt andF=F (s)=Lff (t)g=

R1
0
e�stf (t) dt; from

(3)5 we get

F =
1 + �x�s

�

1 + � f�s�
X; (6)

where we have used the standard expression for the Laplace transform of z(�); given asLfz(�)g=
s�Z-

h�R t
0
z (�) d�= (t� �)�

�i
t=0

; where Lfz (t)g=Z=Z (s) and the term in brackets vanishes
if limt!0+ z (t) is bounded (see [14]). It could be shown that the inversion of (6) yields the
following relation between f (t) and x (t)

f (t) =
�x�
� f�

x (t) +
1

� f�

�
1� �x�

� f�

�Z t

0

e�;�

�
t� �;

1

� f�

�
x (�) d�; (7)

where e�;� (t;�) stands for the generalizedMittag-Lef�er function e�;� (t;�) �E�;� (-�t�) =t1��
with E�;� (t) =

P1
n=0 t

n=� (�n+ �). This equation represents the force-displacement hystere-
sis behavior. It could be used if one wants to rewrite the one degree-of freedom forced oscilla-
tions system with fractional damping elements in the compact form of single integro-differential
equation. Note that for � = 1 the inversion of (6) yields the following relation between the
force and the coordinate f (t) = �x1x (t) =� f1 + (1� �x1=� f1) �

�1
f1

R t
0
e�(t��)=�f1x (�) d� which

is generalized in (7) for � < 1 as expected. On the other hand transforming (3) and using (6) for
0 < � < 1 we get

X =



(s2 + 
2)

(1 + � f�s
�)

(� f�s2+� + s2 + �x�s� + 1)
: (8)

Substituting (8) in (6) one can get F that is the Laplace transform of f (t) :

In the special case when � = 1, corresponding to the Zener model, the direct inversion of (8),
easily performed by use of standard software packages, yields the solution x (t) : In the general



case � < 1 the standard software packages fail to proceed, but one could obtain both x (t) and
f (t) by use of Post's inversion formula, see [6] p. 380, i.e.

x (t) = lim
n!1

(�1)n
�n
t

�n+1
X(n)

�n
t

�
n!

; f (t) = lim
n!1

(�1)n
�n
t

�n+1
F (n)

�n
t

�
n!

:

Although Post's formula, discovered in 1930 [7], may be regarded as an analytical result, very
useful for applications, dif�culties essentially technical in nature prevented its usage in practical
problems. However, nowadays the n-th derivatives of (8) needed for the right-hand-side of Post's
formula could be easily calculated by use of standard software packages. In such a way we may
obtain results useful for error estimations of numerical solutions. At the same time the Post
result could serve as analytical approximation for x (t) (and f (t)) provided the computer has
enough memory and is fast enough to perform large amount of symbolic differentiation. As an
illustration we note that in [12] the same constitutive model (2) was analyzed in the compliant
contact-impact problem modelled by x(2)ci = �fci; xci (0) = 0; x

(1)
ci (0) = 1 and fci (0) = 0:We

added index ci for the convenience. In [12] the inversion of the function Xci = (1 + � f�s
�)�

(� f�s
2+� + s2 + �x�s

� + 1)
�1 was obtained by use of both numerical algorithm similar to (5)

and the Post inversion formula. The agreement between the results was satisfactory even for
relatively small values of n (n = 40 in case � < 1 and n = 70 when � = 1). Note that
second multiplicand in (8) is the same as Xci and that the other one stands for the Laplace
transform of sin
t: Since Xci was inverted in [12] the motion of the forced oscillator x (t)
could be obtained by the convolution x (t) =

R t
0
xci ( ) sin (
t�  ) d ; with xci obtained by

Post's inversion formula applied to Xci: This procedure avoids the problems connected with the
series St (��;
) but, despite the simplicity of the Post inversion formula, we may speculate
that both short memory and time consuming problems could occur before reaching the steady
state regime of the forced oscillator. Thus we turn now to the most elegant solution.

In order to examine the motion of the forced oscillator the inversion of (8) by complex integration
will be done. Following the standard procedure, [3] p. 259, �rst, we chose the contour with a
cut along the negative real axis, say ; as shown in Fig. 1 (the path ABDEFGA) . Then we
analyze the number of poles of (8) inside . The poles s1 = j
 and s2 = �
j; where j stands
for the imaginary unit, are obvious. In order to determine the other ones we apply Rouché's
theorem, see [4], p. 287. Namely, rewriting the second multiplicand of (8), as 1= (p+ q) where
p = s2 + 1 and q = (�x� � � f�) s

�= (1 + � f�s
a) ; and noting that for s = �ej� the condition

jgj = jf j < 1 is satis�ed on  we conclude that p and p+q have the same numbers of zeros inside
; (in our case 2).



In order to �nd two more poles of X we split the equation � f�s2+� + s2 + �x�s
� + 1 = 0 into

the system

� f��
2+� cos (2 + �) � + �2 cos 2� + �x��

� cos�� + 1 = 0;

� f��
2+� sin (2 + �) � + �2 sin 2� + �x��

� sin�� = 0:
(9)

Applying the Newton method we may �nd the solutions of (9) that correspond to principal
branch, say �� and �� and the remaining poles of X , say s3 = ��e

��j; s4 = ��e�
��j: With this

preparation done, we are ready to �nd x (t) = limY!1 (2�j)
�1 R a+Y j

a�Y j e
stX (s) ds; t > 0; i.e.,

as the integral along AB; where a is suitably chosen so all poles lie to the left of the line s = a:
It remains to explore the residue theorem. According to it, the integral along the closed path 
is 2�j times the sum of the residues of estX (s) at the singularities enclosed by : Rewriting
estX (s) as F1 (s; t) =F2 (s) with

F1 (s; t) = (1+� f�s�) 
est; F2 (s) =
�
s2+
2

� �
� f�s

2+�+s2+�x�s�+1
�
; (10)

the residue of F1 (s; t) =F2 (s) ; at the point so; reads F1 (so; t) =F 02 (so) where prime represents
the derivative with respect to s; see [15] p. 161. Referring to Doetcsh once again, we conclude
that the integrals along BD, GA and EF vanish (when R ! 1 and " ! 0): After calculating
the sum of the integrals alongDE and FG, we �nally obtain the motion of the forced oscillator
with fractional type of dissipation as

x (t) =

4X
i=1

F1 (si; t)

F 02 (si)
+

 (�x� � � fa) sin��

�
� I (t) ; (11)

where

I (t)=
1Z
0

(r2 + 
2)
�1
r�e�rtdr

(1+r2)2 + (� f�r2+�+�x�r�)2 +2 (1+r2) (� f�r2+�+�x�r�) cos��
: (12)

Note that the residuals of X determine the value of I (0) : The value I (t) could be easily calcu-
lated by standard procedures. Also note that limt!1 I (t) = 0:



6 RESULTS
In order to illustrate the above results we are going to present motions of the forced oscillator
for numerical values of constants 0 < � < 1; � f� and �x� taken from the paper of Fenander
where the railpad models were investigated, [9].

Namely, for � = 0:23, � f� = 0:004; �x� = 1:183 and 
 = 1, the solutions of (9) read
�� = 1:499 and �� = �1:679: Substituting these values into (11), (12) we obtain the amplitude of
the steady state regime to be 0.818. Performing the same type of numerical experiments while
increasing 
 we conclude that the system goes towards the vibroisolation area. For example
for � = 0:23, � f� = 0:004; �x� = 1:183 and 
 = 10 the amplitude of x in the steady state
is less then 0.01. When compared to the standard viscoelastic solid � = 1 the system for
� < 1 exhibits smaller amplitudes what agrees with the results presented in [2]. Namely, noting
that limt!1

P4
i=3 F1 (si; t) [F

0
2 (si)]

�1+ I (t)��1
 (�x� � � fa) sin�� ! 0we obtain the steady
state solution in the form xs (t) =

P2
i=1 F1 (si; t) [F

0
2 (si)]

�1 : The amplitude of it reads

As =

s�
F1 (
j; 0)

F 02 (
j)
+
F1 (�
j; 0)
F 02 (�
j)

�2
+

�
F1 (
j; 0)

F 02 (
j)
� F1 (�
j; 0)

F 02 (�
j)

�2
: (13)

Calculating (13) for different values of 
; �; �x� and � f� we may obtain the magni�cation
factor for the oscillator with fractional type of dissipation. Since the dimension of the parameter
space in the introduced model is 4 we omit here the usual graphical presentation of that factor.
However with introduced��� = �x��� f� > 0 we note that increasing the value��� the value
of As decreases. This fact could be very useful in engineering applications.

Finally, we may pose a question how will the system under consideration behave if the second
law of thermodynamic is violated. Choosing ��� < 0 and solving (9) yield �� < �=2 and
thus lim

t!1

P4
i=3 F1 (si; t) [F

0
2 (si)]

�1 !1; what leads to a motion represented by time diverging
function. The last comment deals with the possibility of obtaining time diverging functions.
Once again we turn to equation (8). If the roots of (8) are imaginary and symmetrically displaced
about the origin it is possible to have one of them coincide with 
 in which case we would have
a second order pole at s = �
j and a diverging time function, [16], p.196. Namely, putting
�� = 
 and �� = �=2 in (9), for � > 0 one obtains

1� 
2 + 
�
�
�x� � � f�


2
�
cos

��

2
= 0; �x� � � f�


2 = 0; (14)

which can be satis�ed only if 
 = 1 and �x� = � f�. Indeed, if we put �x� = � f� into (8)
the straightforward inversion yields x�x�=�f� (t) = (sin t� t cos t) =2: We close by noting that
�x� = � f� is never satis�ed for thermodynamically well-behaved models and that for such
models the resonance may not occur. This agrees with the classical linear theory with spring
and dashpot as a model. Thus, as a consequence of the Clausius Duhem inequality, we claim
that the time diverging functions are allowed only for the linearly elastic (Hookean) models.
It is worth noting that �the experiments of 280 years have demonstrated amply for every solid
substance examined with suf�cient care, that the strain resulting from small applied stress is not
a linear function thereof�, see [17], p.155.
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