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Summary Objective: On the basis of recent experimental data, a new mathematical
model that predicts creep in human root dentin has been developed.

Method: The chosen constitutive model comprises fractional derivatives of stress
and strain and the restrictions on the coefficients that follow from the Clausius–Duhem
inequality.

Results: The four constants describing mechanical properties of the human dentin at
constant temperature are calculated from a highly non-linear system involving Mittag–
Leffler-type functions. Special attention is paid to thermodynamical restrictions that
should be observed in determining parameters of the model from experimental
results.

Significance: The proposed model allows us to predict behavior of a human dentin in
different load situations. Also it could be used for describing mechanical properties of
dentin that are important in the development of ‘dentin-like’ restorative materials.
Q 2004 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Introduction

Determination of mechanical properties of human
dentin has an importance from both pragmatic and
theoretical point of view. In the case where dentin
is modeled as an elastic body (homogeneous,
isotropic), two constants (modulus of elasticity
and Poisson’s ratio, for example) completely
determine mechanical behavior at constant tem-
perature. Taking into account the structure of
human dentin, that is, its highly oriented tubular
structure with a varying percentage area of tubules
in the total area of the dentin,1 more complicated
mechanical models must be used.

Dentin is vital hydrated composite material
composed of organic and inorganic phase. The
following facts concerning human dentin are of
importance:

1. The composition of human dentin is approxi-
mately 70% inorganic, 20% organic material and
10% water by weight.

2. The inorganic phase of dentin is mainly apatite
crystallites similar in size to those seen in bone
and cementum, and an organic phase consisting
primarily of type 1 collagen.

3. The microstructural characteristic of human
dentin is the arrangement of dentinal tubules
(the number of tubules, ranges from (19–
45)1000/mm2 with the mean diameter (0.8–
2.5) mm), small canals that extend through the
entire dentin thickness, from the dentino-enamel
or dentino-cemental junction to the pulp.
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The course of the dentinal tubules is radial and
slightly S-shaped in the crown but more straight
at incisal portions and in the root. Dentinal
tubules are filled with odontoblastic processes
and dentinal fluid. Each dentinal tubule is lined
with a layer of peritubular dentin, which is much
more mineralized than the surrounding inter-
tubular dentin. Pashley et al.1 reported that
number of tubules and peritubular dentin area
decrease with distance from the pulp and the
intertubular area increases with distance from
the pulp.

4. The composition and microstructure of dentin is
well-known but there are fewer studies about
the relationship between the structure and
mechanical properties of human dentin.

Our aim in this work was to propose a
viscoelastic fractional-derivative model of human
dentin. Fractional-derivative models have been
used with great success to describe stress relax-
ation and creep phenomena for different
materials. Here we shall show that the results of
Ref. 2 can be nicely described by a fractional-
derivative viscoelastic model. The mechanical
properties of human dentin are important to the
development of ‘tooth-like’ or ‘dentin-like’
restorative materials.

The model

It is known that Hooke’s law, describing strain
(relative elongation) 1 and stress (force per unit
area of the body in the undeformed state), also
called Piola–Kirchhoff stress3 states

s ¼ �E1; ð1Þ

where the constant �E . 0 is called the modulus of
elasticity. The standard linear viscoelastic body has
a constitutive relation (stress–strain relation) in the
form

sþ tss
ð1Þ ¼ �E1þ �Et11

ð1Þ
; ð2Þ

where s and 1 denote the stress and strain at time t;
respectively, ð·Þð1Þ ¼ dð·Þ=dt denotes the first
derivative with respect to time, and ts; �E and t1
are constants called stress relaxation time, mod-
ulus of elasticity and strain relaxation time,
respectively. The second law of thermodynamics,
together with the stability conditions implies that in
Eq. (1) the following restrictions on the constants
must be satisfied8,9

�E . 0; ts . 0; t1 . ts: ð3Þ

To describe the specific class of viscoelastic
materials, equations of type (2) have been generali-
zed by replacing the first derivative that appears in
Eq. (2) with the fractional derivatives. Thus, if we
introduce a—the derivative, 0 , a , 1; of a func-
tion fðtÞ in the Riemann–Liouville form4,5,10

da

dta
fðtÞ ¼ fðaÞ ;

d

dt
1

Gð1 2 aÞ

ðt

0

fðtÞdt
ðt 2 tÞa

;

where G is the Euler gamma function, then the
fractional derivative type generalization of Eq. (2)
was taken in the form, see Ref. 6, for example

sþ asðaÞ ¼ E1þ Eb1ðaÞ; ð4Þ

where 0 , a , 1 and a; b and E are constants. The
dimension of a and b is time to the power of a:

By invoking the second law of thermodynamics,
the following restrictions on the constants a; a; b
and E are obtained6,7

E . 0; b $ a . 0: ð5Þ

We shall use constitutive equation (5) to study
stress relaxation and creep.

By applying the Laplace transform LðfÞðzÞ ¼
Ð1

0

eitzfðtÞdt ¼ �fðzÞ to Eq. (4) we obtain

�sð1 þ azaÞ ¼ E �1ð1 þ bzaÞ; ð6Þ

where we used the fact that

L½yðaÞ� ¼ za �fðzÞ2
1

Gð1 2 aÞ

ðt

0
yðtÞðt 2 tÞ2adt

� �
t¼0

:

The term

1

Gð1 2 aÞ

ðt

0
yðtÞðt 2 tÞ2adt

� �� �
t¼0

vanishes if yðtÞ is bounded for t !þ0: Eq. (6) was
solved for �1 or for �s to obtain

�1 ¼
�s

E
1 2 1 2

a
b

� �
za

za þ
1

b

2
664

3
775; ð7Þ

or

�s ¼ E �1 1 þ
b
a
2 1

� �
za

za þ
1

a

2
664

3
775: ð8Þ

The inversion of Eqs. (7) and (8) could be easily
obtained, (see, for example, Ref. 11, p. 292)

1ðtÞ ¼
sðtÞ
E

2
1

E
1 2

a
b

� �
d

dt

ðt

0
sðt 2 tÞea t;

1

b

� �
dt;

ð9Þ
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where eðt; lÞ is the Mittag–Leffler-type function,
defined as12

eaðt; lÞ ¼ Eað2ltaÞ; ð10Þ

with EaðtÞ being the Mittag–Leffler function ða . 0Þ;

EaðtÞ ¼

X1
n¼0

tn

Gðan þ 1Þ
; for small t

2
X1
k¼1

t2k

Gð1 2 akÞ
; for large t

8>>>><
>>>>:

ð11Þ

Similarly from Eq. (8) we obtain

sðtÞ ¼ E 1ðtÞ þ
b
a
2 1

� �
d

dt

ðt

0
1ðt 2 tÞea t;

1

a

� �
dt

� �
:

ð12Þ

With this preparation completed, we apply Eqs.
(9) and (12) to creep and stress relaxation tests,
respectively.

Creep test

Suppose that

sðtÞ ¼
0; t # 0

s0; t . 0

(
: ð13Þ

Then, from Eq. (9) we obtain

1ðtÞ ¼
s0

E
1 2 1 2

a
b

� �
ea t;

1

b

� �� �
: ð14Þ

Stress relaxation test

Similarly suppose that

1ðtÞ ¼
0; t # 0

10; t . 0

(
: ð15Þ

then Eq. (12) leads to

sðtÞ
E10

¼ 1 þ
b
a
2 1

� �
ea t;

1

a

� �
: ð16Þ

Results of application to the
measurements of human root dentin

We applied the model presented in Section 2 to the
experimental results presented in Ref. 2. Namely,
our model depends on four parameters a; a; b and E:
Four points were chosen from the stress relaxation
curve presented in Fig. 6 of Ref. 2 and then Eq. (16)
was forced to pass through those points. In doing so,
we used Newton’s method. Then we used the least

squares method to improve the agreement between
the model and the experimental results. For the
case presented in Fig. 6 of Ref. 2, the suggested
procedure yields

a ¼ 0:136; a ¼ 0:525; b ¼ 0:778; E10 ¼ 616:287:

ð17Þ

In Fig. 1, the agreement between the exper-
imental results and the model (16) with (17) can be
seen.

We note that the maximal relative error is less
then 3%. This is an important property of this
model: it is simple, it has a small number of
parameters (E; a; band a) and it is able to predict
behavior of the material with significant accuracy.

In Fig. 2, we show the stress relaxation curve
predicted by the fractional model for large values
of time.

Two remarks can be made here. First, it should
be noted that the constants (17) could be used for
different types of loading,13,14 such as impact and
cyclic loading. Also, it should be noted that

Figure 1 Agreement between the stress relaxation
curves for the sample loaded to 700 NT (dashed line) of
Ref. 2 and the fractional models (16) and (17).

Figure 2 Prediction of stress relaxation in dentin.
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the constants a; a; b and E could be estimated for
different values of temperature and then used for
predictions of dentin behavior in real clinical
situations. Both remarks are important for restora-
tive dentistry, since it is expected that dentin-like
materials, chosen for restoration, will give better
results than others.

Finally as another test of this model we predict
creep of dentin, see Fig. 3. Namely, we put Eq. (17)
and s0 ¼ 300 N in Eq. (14) and obtain the creep
curve very close to the experimental curve pre-
sented in Fig. 3 of Ref. 2.

Conclusions

In this work, we proposed a fractional-derivative
viscoelastic model (6) for describing mechanical
properties of a human root dentin. When applied to
creep and stress relaxation tests, this model lead to
the expressions (16) and (17) which it was expected
would accurately match the experimental results.

The experimental results presented in Ref. 2
were used to determine the four constants in the
proposed model. We found good agreement
between the experimental results and the theor-
etical prediction.
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Fig. 3 Prediction of creep in dentin.
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